Skip to main content

SQL

基本查询

SELECT *
FROM [14830].[file_key_event] AS t
WHERE t.event_time = #relative_time:1:day:%yyyy-MM-dd HH:mm:ss%#
AND t.eventName = 'tech_webview_finish_navigation'
select
substring(event_time, 1, 10) as datestring
, count(distinct uin) as uv
, count(*) as pv
from
[1035949].[file_key_event] as t
where
t.event_time = #relative_time:14:day:%yyyy-MM-dd HH:mm:ss%#
and t.eventname = 'state_intelligent_label'
group by
datestring
order by
datestring desc

GROUP BY

GROUP BY 语句用于结合合计函数,根据一个或多个列对结果集进行分组。

select
substring(event_time, 1, 10) as datestring
, ext
, substring(regexp_extract(extra, 'isThirdCall:[^,]*', 0), 13, 100) as isthirdcall
, count(distinct uin) as uv
, count(*) as pv
from
[14830].[file_key_event] as t
where
t.event_time = #relative_time:7:day:%yyyy-MM-dd HH:mm:ss%#
and t.eventname like 'sp_file_intro_page%'
group by
ext
, datestring
, isthirdcall
order by
datestring desc
, uv desc

开窗函数

SELECT dateString,
isThirdInvoke,
uv,
uv * 100 / sum(uv) over(partition by dateString) as percent
FROM (
SELECT SUBSTRING(event_time, 1, 10) as dateString,
regexp_extract(extra, 'isThirdInvoke:[^,]*', 0) as isThirdInvoke,
count(distinct uin) as uv
FROM [14830].[file_key_event] as t
WHERE t.event_time = #relative_time:30:day:%yyyy-MM-dd HH:mm:ss%#
AND t.eventName = 'doc_exposed'
AND regexp_extract(extra, 'isThirdInvoke:[^,]*', 0) <> ''
GROUP BY dateString,
isThirdInvoke
) t1
ORDER BY dateString DESC

百分位

SELECT t2.dateString,
ApproxPercentile(t2.doubleInterval, 0.3) as 耗时30分位,
ApproxPercentile(t2.doubleInterval, 0.5) as 耗时50分位,
ApproxPercentile(t2.doubleInterval, 0.7) as 耗时70分位,
ApproxPercentile(t2.doubleInterval, 0.9) as 耗时90分位
FROM (
SELECT SUBSTRING(event_time, 1, 10) as dateString,
CAST(
split_part(
regexp_extract(extra, 'interval:[^,]*', 0),
':',
2
) as double
) as doubleInterval
FROM [14830].[file_key_event] as t
WHERE t.event_time = #relative_time:30:day:%yyyy-MM-dd HH:mm:ss%#
AND t.eventName = 'tech_webview_finish_navigation'
) t2
GROUP BY t2.dateString

JOIN

Here are the different types of the JOINs in SQL:

  • (INNER) JOIN: Returns records that have matching values in both tables
  • LEFT (OUTER) JOIN: Returns all records from the left table, and the matched records from the right table
  • RIGHT (OUTER) JOIN: Returns all records from the right table, and the matched records from the left table
  • FULL (OUTER) JOIN: Returns all records when there is a match in either left or right table

img

SELECT t1.dateStr as 日期,
t1.uv as 大盘UV,
t2.uv as 文件UV,
CONCAT(
Cast(
Cast(t2.uv / t1.uv * 100 as decimal(18, 2)) as varchar(5)
),
'%'
) as 百分比
FROM (
SELECT SUBSTRING(event_time, 1, 10) AS dateStr,
COUNT(distinct uin) AS uv
FROM [14830].[rqd_applaunched] AS t
WHERE t.event_time = #relative_time:30:day:%yyyy-MM-dd HH:mm:ss%#
GROUP BY dateStr
) t1
LEFT JOIN (
SELECT SUBSTRING(event_time, 1, 10) as dateStr,
COUNT(distinct uin) as uv
FROM [14830].[file_homepage_event] as t
WHERE t.event_time = #relative_time:30:day:%yyyy-MM-dd HH:mm:ss%#
AND t.eventName = 'file_home_exposure'
GROUP BY dateStr
) t2 ON t1.dateStr = t2.dateStr
ORDER BY 日期 DESC

中文

select *
from
[1035949].[MTT_NEW_UPLOAD_DOWNLOAD] as t
where
t.event_time = #relative_time:7:day:%yyyy-MM-dd HH:mm:ss%#
and regexp_like(B25, '[\u4e00-\u9fa5]')
limit 5000